Angiopoietin-1 variant reduces LPS-induced microvascular dysfunction in a murine model of sepsis
نویسندگان
چکیده
INTRODUCTION Severe sepsis is characterised by intravascular or extravascular infection with microbial agents, systemic inflammation and microcirculatory dysfunction, leading to tissue damage, organ failure and death. The growth factor angiopoietin (Ang-1) has therapeutic potential but recombinant Ang-1 tends to aggregate and has a short half-life in vivo. This study aimed to investigate the acute effects of the more stable Ang-1 variant matrilin-1-angiopoietin-1 (MAT.Ang-1) on the function of the microcirculation in an experimental model of sepsis, and whether any protection by MAT-Ang-1 was associated with modulation of inflammatory cytokines, angiogenic factors or the endothelial nitric oxide synthase (eNOS)-Akt and vascular endothelial (VE)-cadherin pathways. METHODS Aluminium window chambers were implanted into the dorsal skinfold of male C3H/HeN mice (7 to 10 weeks old) to expose the striated muscle microcirculation. Endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (LPS, 1 mg/kg at 0 and 19 hours). MAT.Ang-1 was administered intravenously 20 hours after the onset of sepsis. Microcirculatory function was evaluated by intravital microscopy and Doppler fluximetry. RESULTS Endotoxemia resulted in macromolecular leak, which was ameliorated by MAT.Ang-1 post-treatment. LPS induced a dramatic reduction in tissue perfusion, which was improved by MAT.Ang-1. Proteome profiler array analysis of skeletal muscle also demonstrated increased inflammatory and reduced angiogenic factors during endotoxemia. MAT.Ang-1 post-treatment reduced the level of IL-1β but did not significantly induce the expression of angiogenic factors. MAT.Ang-1 alone did not induce leak or increase angiogenic factors but did reduce vascular endothelial growth factor expression in controls. CONCLUSION Administration of MAT.Ang-1 after the onset of sepsis protects the microcirculation from endotoxemia-induced vascular dysfunction through reducing inflammation but without pro-angiogenic actions, thus representing a novel, potential pharmacotherapeutic agent for the treatment of sepsis.
منابع مشابه
LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2α/Notch3 pathways
Recent studies reveal a crucial role of pericyte loss in sepsis-associated microvascular dysfunction. Sirtuin 3 (SIRT3) mediates histone protein post-translational modification related to aging and ischemic disease. This study investigated the involvement of SIRT3 in LPS-induced pericyte loss and microvascular dysfunction. Mice were exposed to LPS, expression of Sirt3, HIF-2α, Notch3 and angiop...
متن کاملThe synthetic Tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis
INTRODUCTION Angiopoietin-1 (Angpt1), the natural agonist ligand for the endothelial Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions. Here we evaluate the efficacy of a novel polyethylene glycol (PEG)-clustered Tie2 agonist peptide, Vasculotide (VT), to protect against ...
متن کاملFixing the leak: targeting the vascular endothelium in sepsis
Angiopoietin-1 is a Tie-2 receptor agonist that stabilizes vascular endothelium, promoting endothelial maturation and preventing capillary leak. Angiopoietin-2 is largely a competitive partial antagonist that is markedly elevated in humans and animal models of sepsis and other inflammatory states, directly disrupts the endothelial barrier, and has been correlated with end-organ dysfunction and ...
متن کاملExperimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction
INTRODUCTION The Tie2/angiopoietin (Tie2/Ang) and vascular endothelial growth factor receptor-ligand systems (VEGFR/VEGF) are recognized to play important roles in the regulation of microvascular endothelial function. Downregulation of these genes during sepsis has been implicated in the pathogenesis of sepsis-related microvascular leak and multiple organ dysfunction syndrome. Mechanisms respon...
متن کاملPerspectives in Pharmacology Mending Leaky Blood Vessels: The Angiopoietin-Tie2 Pathway in Sepsis
Sepsis is a systemic inflammatory response to infection. A common end-feature, these patients regularly suffer from is the so-called multiple organ dysfunction syndrome, an often fatal consequence of organ hypoperfusion, coagulopathy, immune dysregulation, and mitochondrial dysfunction. Microvascular dysfunction critically contributes to the morbidity and mortality of this disease. The angiopoi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2012